

Android Evidence

Database:
 For Forensic Use

Executive Summary: 3

Requirements Specifications: 3
Functional Requirements: 3
Users and use cases: 4
Non-Functional Requirements: 4

System Design & Development: 4
Design Plan: 4
Design Objective, Constraints, Trade-offs: 5
Architectural Diagram, Design Block Diagram: 6
Description of Modules, Constraints, and Interfaces: 6

Implementation: 8
Implementation Diagram, Technologies Used 8
Choices: 8

Testing, Validation, and Evaluation: 12
Test Plan: 12
Unit Testing: 12
Interface Testing: 12
System Integration Testing: 13
Validation: 13

Project and Risk Management: 14
Task Decomposition: 14
Project Schedule: 14
Risks and Mitigation: 15
Lessons Learned: 16

Conclusion: 16
Closing Remarks for the project: 16
Future Work: 16

Team Information: 17

2

Executive Summary:
With technology becoming more and more integrated into the everyday life, digital forensics
has begun to play a larger role in proving the innocence or guilt of suspects. One piece of

technology that is a staple nowadays are cell-phones. Mobile apps, which are located on the
phones create records of all sorts of digital evidence such as GPS locations, activity
timestamps, visited URLS, web history, social media contacts, etc., that is either saved on the
device or on their own servers. Current digital forensic practices often involve manually
combing through all the files, shared-preferences, and databases on the mobile device. This
process is time consuming and error prone.

Our task is to create a real-world evidence database of Android applications from many app
stores that are globally used. We will create web crawlers to traverse the app stores collecting
metadata and downloading the application. After collecting the application file, we will run it
through the forensic analysis tools to collect where the application is storing the information
that it gathers. Having this information stored in the database, we will then allow users to
request the information about a specific application.

Requirements Specifications:

Functional Requirements:

● For all apps on an app store.
○ APK crawler must collect APK files. In addition to collecting the metadata, the crawler

will also download their current and past APK files.
○ APK crawler must store data in a database. Once the app metadata and its APK are

collected, it will store all the information into the database and the APK file into the
filesystem.

○ App storage data must be retrieved by forensic program. Once collected, the APK will be
passed through our client’s forensic program that will output additional information about
where the app stores data on a user’s device.

● Database must store results from forensic program. Once the data has been passed to the
forensic program it must store the results outputted.

● Backend
○ Process all requests from the frontend
○ Allow new forensic reports to be uploaded

● Website / UI
○ Query database for specific application
○ Query database given a list of applications in CSV format

3

○ Display application metadata and report data

Users and use cases:

The primary intended end user for our database will be digital forensic investigators. There
are several different scenarios in which our database will be useful to a digital investigator.
One such situation might be in utilizing the location data gathered from an application,
associated with the timestamps, to prove that a client was not in a certain place at a certain
time. Investigators and their teams will be able to go to our web interface and search for all
the applications which are present on the mobile device. Our software will tell them which
applications contain the desired metadata.

Another possible user of our database will be academic researchers who study mobile
applications. As this database will be the largest collection of Android APK files to date,
researchers studying anything related to mobile applications and their contents may find use
in the ability to search through all the available applications across all the third party app
stores.

Non-Functional Requirements:

● Scalability - The system must be scalable to support all the vast amount of applications we
need to download and analyze. This will be done by designing our system using
microservices and using a NoSQL database.

● Availability - The system must be operating 24/7 to ensure that all versions are collected
when they are updated on an app store. In addition, the service needs to be available 24/7 to
support 3rd party requests at any time.

● Maintainability - The system needs to be maintainable past the day that we deliver the
product. Since webpages are constantly updated and changed the crawlers also need to be
updated to support those changes. This will be done by creating detailed documentation on
the product and designs of how each component should behave.

● Data Integrity - The data that we collect from the websites and the forensic tool should not be
modifiable by any individual after collection. We will ensure that the data remains genuine
by restricting access to the database and filesystem. We will also replicate our database to
ensure that if there is a database failure we will not lose any data.

System Design & Development:

Design Plan:

In regards to our crawler design, we decided to design each crawler with a unique skeleton
for visiting each application on a given store. In order to allow for ease of creating new

4

crawlers, it was decided to extract the common components. This would allow for each
crawler to only have to implement the app location and metadata retrieval on the site.
For our design we decided to use python scripts for the web crawlers, MongoDB for our
database and use the LSS drive as our filesystem for storing the APK files. Each crawler will
be contained as a separate service, allowing us to modify and scale the crawlers individually
based on their needs. We decided to use MongoDB as our database because we wanted a
database that could scale to meet our needs. MongoDB can scale horizontally which allows
us to grow fast as more data is collected. We decided to go with a filesystem to store the
APK files as they will not be accessed often and there will potentially be large files that
would be difficult to store in a traditional database. Figure 1 below shows what our designed
system will look like.

Design Objective, Constraints, Trade-offs:

Our design objective was to create a system that could collect information from websites and
then store it to later be accessed by an end user. We had to take into account several
considerations when we were designing the system. The first was the amount of data that we
were going to be collecting. We were required to collect all the metadata about each
application from each store as well as the apk file itself. We needed to ensure that will all the
apps on all the stores that we would create a system that could scale and be able to handle the
influx of data that we would be collecting. We also needed to make sure that our system was
easily extensible. With so many app stores available throughout the world, we needed to
make sure that our system would allow for new crawlers to be added to system easily.
Architectural Diagram, Design Block Diagram:

(Figure 1. Architectural Diagram)

5

Our system is constructed with four distinct components. Theses components are the
frontend, backend, crawlers, and data stores. The next section will go into more depth about
each component.

Description of Modules, Constraints, and Interfaces:

Frontend - The frontend of our system is a website. The website allows end users to query
our database and extract the information that they require.

Backend - The backend application is responsible for acting as an intermediary between the
frontend and the database. The backend is also responsible for allowing users to upload new
forensic reports for a particular application version.

Web Crawler - The web crawlers are used to scrape web pages for information. The crawlers
visit a page about a particular application extracts all the information about that application,
downloads the apk and then saves it to the database and filesystem.

Data Stores - The last main component of our system is the data stores that we use to store all
the information we collect. We store all the metadata that we collect for an application in a
database and the actual apk files in a filesystem.

Implementation:

(Figure 2. Implementation Diagram)

6

Figure 2 represents how we have implemented our solution. Each service is a separate docker
container deployed on the server. All of our data is stored on the LSS drive hosted at Iowa
State University.

Implementation Diagram, Technologies Used

Choices:

Frontend - For the frontend we chose to use React as our framework. We use Nginx to serve
our static web files generated from our build. We use a CSV formatted file to allow users to
do large queries with the database.

(Figure 3. Application View on Website)

In Figure 3, we see how the interface appears after selecting an application. In this instance,
we have selected the application “BeOn PTT” and are given a handful of metadata related to
it. On the right side of the screen, report data will be displayed if there is data in the database.

7

(Figure 4. Search Results on Website)

Figure 4 shows us the UI when a user searches for the application “snapchat”. The UI then
displays a list of application that are closely associated with that keyword. Each app also has
some metadata displayed with it.

Backend - The backend is a Node.js application. It utilizes the Express.js framework for
routing and Mongoose to communicate with the database. We choose to go with Node to
make it a full javascript stack and it is a simple tool to create an API with. Node also has a
solid library to communicate with our MongoDB. Below is the API that we have created to
interact with our system:

● Returns a list of applications matching the query parameters of app name or package

name
○ GET /api/v1/applications?appName=”string”&packageName=”string”

● Returns detailed all detailed information about a specific application
○ GET /api/v1/applications/{app_id}

● Returns detailed info about a list of applications requested
○ POST api/v1/applications

● Downloads a specific apk file
○ GET api/v1/download/{version_id}

● Returns statistics about the database
○ GET api/v1/stats

8

Web Crawler - The web crawlers are python scripts that utilize the beautifulsoup library to
scrape info off of websites. The crawlers also use selenium to create a headless browser to
navigate to the web pages. In order to keep consistency between crawlers, all communication
between them and the data stores have been contained in a separate script for ease of access.
This script also contains functions for retrieving web pages with a built-in system to prevent
rate-limiting.

Data Store - The two data stores that we choose are MongoDB and the filesystem. We
choose to go with MongoDB as it meets our performance needs and also allows us to scale
horizontally easily. MongoDB also gives us the flexibility to add fields based on websites as
each site contains different information to collect. Below you can see our database model that
we have constructed.

(Figure 5. Database Model Diagram)

The database model consists of three collections. The first collection is the application
collection. The application collection contains one record for each application on each store
with all the metadata related to it that is collected. The version collection contains all the info
about a specific version for a specific application. The forensic report collection contains all
the reports that are generated from analyzing the apk files.

9

We choose to use the filesystem to store our apk files as we will not be accessing them
regularly and the file sizes can be quite large, which a traditional database would not be able
to handle well. We are utilizing the large scale storage solution (LSS) at Iowa State
University for this aspect of the solution.

For building and deploying this system we plan on using docker containers for each of our
services. Each service will be its own container in order to isolate each service from one
another and make them more secure. Additionally, by making them all containers we can
deploy each of our services faster, update them in an automated fashion and create more
instances of a crawler to crawl an application store faster.

Testing, Validation, and Evaluation:

Test Plan:

We used manual testing for the majority of our project. The only automated tests we
implemented are unit tests for web crawlers.

Unit Testing:

Web crawlers have automated unit tests that run on startup. These tests use a local copy of a
portion of the associated crawler’s app store’s site. The test html pages will be crawled
through and the results will be compared to a predetermined correct data set. Currently we
only have one crawler set up to accomplish this.
Success condition: 100% data match
Results: Currently the unit tests for the web crawlers have only been implemented into one of
the web crawlers. This is because the client emphasized we get as many crawlers as possible
working, rather than focusing time into unit testing. The crawler with this implemented
matches the predetermined data set with 100% success.

The backend has automated testing to ensure that all the API endpoints behave as expected.
We have tests to ensure that the API returns the correct result for both good and bad requests.
Success condition: 100% tests pass
Results: The backend passes its unit tests with 100% success.

Interface Testing:

Web Crawlers → Database:

10

The web crawlers have been tested to ensure that they can communicate with the
database correctly. All metadata must be written to the database and each app from each
app store must have its own entry.
Success condition: 100% of data is written correctly
Results: The crawlers record metadata on the database with a success rate of 100%. This
is feasible due to the nature of our MongoDB database where entries do not need to be in
a set structure.

APK files are checked for duplicates before download, so the database is tested for any
duplicate files due to potential signature collisions.
Success condition: Less than 5% of apps have duplicates
Results: Currently our database reports a duplication percentage of 0.3 percent. This
number is probably not representative of the true value as we did not have duplication
metrics implemented when collection began, so numbers have only been updated with
newly collected apps. In addition, since Google Play only provides one version, this
reduces the possibility of having a duplicate. We expect this number to grow as more
stores are implemented, especially ones where we have access to more versions of the
app. However, this value should still be under 5%.

User API → Database:
The user API that forensic analysts will use to get information about specific apps was
tested to ensure that it communicates with the database correctly. The API must be able
to query metadata and APK files from the database.
Success condition: 100% of data is correctly obtained
Results: The website’s queries all reach the API endpoints and receive accurate apps and
metadata with a 100% success rate.

Database → File System:
The database was tested to ensure that all file paths point to the correct files in the file
system.
Success condition: 100% of files are in the expected directories
Results: All files in the database point to the correct files in the file system. The
connection between the app and the location are determined when the APK file is
downloaded initially.

11

System Integration Testing:

Tests were run to make sure that apps and metadata follow the data path and are written into
the database and stored in the file system correctly. We verified that metadata and apps were
correctly obtained on the frontend website.

Validation:

With close inspection by our advisor, we have determined that we have followed the
guidelines laid out for us. The project accomplishes most of the goals that were established at
the beginning of the academic year, and we have prepared information for the next group to
continue the project.

Project and Risk Management:

Task Decomposition:

Connor - Crawler Implementation

Emmett - System and database design. Database, backend and docker implementation

Jake - Crawler Implementation

Matt - Crawler and Frontend Implementation

Mitch - Crawler Implementation

Project Schedule:

Proposed:

(Figure 6. Proposed Gantt Chart)

12

Actual:

(Figure 7. Actual Gantt Chart)

Figure 6 represents our anticipated progress during the first semester of our class. It was
mostly based off of the schedule laid out by our clients. Figure 7 is our actual progression.
We ended up developing web crawlers throughout the whole class and many of our
milestones lasted longer than originally planned.

Risks and Mitigation:

Anticipated:

Our project requires that we obtain a large amount of storage space to store all the
applications that we download. We might not be able to obtain all the space needed to
download all the APK files. We are looking into possible solutions that we can utilize at the
scale we need.

Another resource that might be difficult in obtaining at the scale we require is computing
power. Our solution will be crawling multiple app stores across millions of pages requiring a
significant amount of computing power be dedicated in parsing all of the web pages.
Currently we are talking to CSAFE to provide us with the compute power that we need. In
the meantime we can use a VM from ETG to test our service on a smaller scale.

We are implementing the solution in python and using MongoDB for our database. We as a
team do not extensive knowledge or have worked on a large project in python. This will
require us to ramp up our understanding of python. In addition, none of us have worked
extensively with MongoDB before which is another piece of technology that we will have to
learn.

Actual:

One risk that we encountered during the project was the legal issues surrounding crawling
over the stores and storing the APK files. This risk was particularly important as it was the
core of our project. There were concerns about whether we were violating the terms of

13

service of the stores by using code to collect all of the apk files and metadata. In addition,
there were also concerns of storing the APK files and redistributing them as they may contain
copyrighted material that we would then be in violation of. We did not deal with this risk
directly but shifted the responsibility of the problem from us to our clients.

Another risk that we encountered was our lack of knowledge with several of the technologies
that we were using. This included how to crawl over websites, MongoDB, Docker and other
small technologies used in the project. We were able to mitigate this risk by doing research
into the technologies that we wanted to use and looked up best practices for how to use and
implement the technology.

A big risk for us was to ensure that we would have enough space to store the APK files that
we were downloading. With the amount of apps available on the stores, we needed to make
sure we had plenty of space to store them all. We were able to secure storage space that meet
our standards through the large scale storage solution here at Iowa State.

Lessons Learned:

As we worked on this project we learned a lot of useful information pertaining to how it is to
work for a client as well as building our product from the ground up. It was a good learning
experience in planning out what we want to achieve and how we planned to go about
accomplishing our set goals. We also learned many technical skills including python and how
to navigate through html as well as working with large quantities of data.

Conclusion:

Closing Remarks for the project:

Our solution will be able to reduce the time taken for digital forensics. It is able to do this by
utilizing the database we created. Forensic analyzers will be able to query our system by
entering the name of applications of the digital device and our system will return the type and
location of the information the app catalogs. This transaction of information will be much
faster than combing through every file on the device.

Future Work:

There are several things that can be continued on our project. One direction is to develop
crawlers to add to the amount of information that we collect as we did not get every app store
available. Another direction is starting to make this project ready for use in the field. This
includes refining the website to make a better user experience and add additional features.
Also making our system ready for a production environment like more testing, increased
security, and making our containers more resilient.

14

Team Information:
Connor Kocolowski: Senior in Computer Engineering

Emmett Kozlowski: Senior in Computer Engineering

Mitchell Kerr: Senior in Software Engineering

Matthew Lawlor: Senior in Software Engineering

Jacob Stair: Senior in Software Engineering

15

