

SDMAY19-38 1

Table of Contents
1 Introductory Material 5

1.1 Acknowledgement 5

1.2 Problem Statement (2 paragraphs +) 5

1.3 Operating Environment 5

1.4 Intended Users and Intended Uses 5

1.5 Assumptions and Limitations 6

1.6 Expected End Product and Other Deliverables 6

2 Proposed Approach and Statement of Work 7

2.1 Objective of the Task 7

2.2 Functional Requirements 7

2.3 Constraints Considerations 7

2.4 Previous Work And Literature 8

2.5 Proposed Design 8

2.6 Technology Considerations 9

2.7 Safety Considerations 9

2.8 Task Approach 10

2.9 Possible Risks And Risk Management 11

2.10 Project Proposed Milestones and Evaluation Criteria 11

2.11 Project Tracking Procedures 11

2.12 Expected Results and Validation 12

2.13 Test Plan 12

3 Project Timeline, Estimated Resources, and Challenges 13

3.1 Project Timeline 13

3.2 Feasibility Assessment 13

3.3 Personnel Effort Requirements 14

3.4 Other Resource Requirements 15

SDMAY19-38 2

3.5 Financial Requirements 15

4 Closure Materials 15

4.1 Conclusion 15

4.2 References 15

4.3 Appendices 16

SDMAY19-38 3

List of Figures

Figure 1: Proposed Architecture Diagram

List of Tables

Table 1: Major Tasks

List of Symbols

List of Definitions

CSAFE - Center for Statistics and Applications in Forensic Evidence

REST API - Representational State Transfer Application Programming Interface

ETG - Electronics and Technology Group

IEEE - Institute of Electrical and Electronics Engineers

API - Application Programming Interface

ANSI - American National Standard Institute

SQL - Technology used for database management

SDMAY19-38 4

1 Introductory Material

1.1 ACKNOWLEDGEMENT

Team 38’s Client: NIST Center of Excellence in Forensic Sciences - CSAFE at Iowa State
University

Team 38’s Advisors: Profs. Yong Guan and Neil Gong

1.2 PROBLEM STATEMENT (2 PARAGRAPHS +)

With technology becoming more and more integrated into the lives of everyone, digital
forensics has begun to play a larger role in proving innocence or guilt of suspects. One
piece of technology that is a staple of everyday life are cell-phones. Mobile app, which are
located on the phones create records of all sorts of digital evidence such as GPS locations,
activity timestamps, visited URLS, web history, social media contacts, etc., that is either
saved on the device or on their own servers. Current digital forensic practices often
involve manually combing through files, shared-preferences, and databases on the mobile
device. This process is time consuming and error prone.

Our task is to create a real-world evidence database of over 7 million Android apps from
roughly 40+ app stores that are globally used. We will create web crawlers to traverse the
app stores collecting metadata and downloading the application. After collecting the
application file, we will run it through the forensic analysis tools to collect where the
application is storing the information that it gathers. Having this information stored in the
database, we will then allow users to request the information about a specific application.

1.3 OPERATING ENVIRONMENT

Our project exists entirely as a software tool. As such, no specific physical conditions will
need to be considered for the end product. However, our project will include a web
interface for use by investigators. In order to achieve this, it will be a requirement for the
end product to work on multiple web browsers across several operating systems.

1.4 INTENDED USERS AND INTENDED USES

The primary intended end user for our database will be digital forensic investigators.
There are several different scenarios in which our database will be useful to a digital
investigator. One such situation might be in utilizing the location data from an
application, associated with the timestamps, to prove that a client was not in a certain

SDMAY19-38 5

place at a certain time. Investigators and their teams will be able to go to our web
interface and search for all the applications which are present on the mobile device. Our
software will tell them which applications contain the desired metadata.

Another possible user of our database will be academic researchers who study mobile
applications. As this database will be the largest collection of Android APK files to date,
researchers studying anything related to mobile applications and their contents may find
use in the ability to search through all the available applications across all the third party
app stores.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions

● A long term hosting solution is found
● BeautifulSoup Python Library is not deprecated for future updates to the database

Limitations

● Server will not be able to handle a massive amount of simultaneous requests to the
database or file system

● Project only focuses on Android mobile devices
● Crawlers may have not collected app store related information necessary for some

investigations

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

By April 28th, we are expecting to deliver a APK crawler that will crawl through 40+ app
stores and collect app metadata and their APK files. Additionally, we will have a database
that will store all the metadata from these apps and a evaluation based off the evidential
data from the apps.

The APK crawler is designed to crawl through over 40+ Android app stores to collect
metadata about these apps and download their APK files. It will be activated periodically
to collect any new apps that are uploaded and to collect data on apps that have been
updated. When finished crawling, it will upload the findings to our database to be yes
processed at a later time.

As explained above, the database will hold onto the apps metadata and the file path
leading to the APK files in our filesystem. After being stored, we will run the APK files
through our clients forensics application to determine where these apps store their data
on a user’s device along with the type of data. This information will also be stored on this
database.

SDMAY19-38 6

Lastly, we will be making a report for our clients based off the results of our database and
APK crawler. It will most likely consist of how well the crawler collects metadata and how
efficient it is. It will include possible improvements to be made when we hand the project
off. The report will also contain information on our database architecture and its ability to
scale and hold our information.

2 Proposed Approach and Statement of Work

2.1 OBJECTIVE OF THE TASK

Our project aims to develop a complete database consisting of information taken from
every android application from 40+ different app stores. The desired outcome from this is
to allow for criminal justice investigations to reach a verdict of guilt in a time-efficient
manner. This will be possible because they, will be able to query our database and get a
resulting list of applications that log the type of data they are searching for. In order to
make the process more efficient, we will also gather the number of downloads, ratings,
and other information regarding each app. This speeds up the process because it will give
an idea of apps that are likely to be a given phone.

2.2 FUNCTIONAL REQUIREMENTS

In order to meet our goals the:

● APK crawler must collect app metadata. The crawler must collect the metadata for
all apps on an app store.

● APK crawler must collect APK files. In addition to collecting the metadata, the
crawler will also download their current and past APK files.

● APK crawler must store data in a database. This is self explanatory, but once
finished with collecting app metadata and its APK, it will store the metadata and
the location of the APK file in our file system into the database.

● App data must be passed into forensic program. Once collected, the APK will be
passed through our client’s forensic program that will output additional
information about where the app stores data on a user’s device.

● Database must store results for forensic program. Again, self explanatory, but once
data has been passed to the forensic program it must store the results outputted.

2.3 CONSTRAINTS CONSIDERATIONS

For this project, constraints we have set forth consist of:

SDMAY19-38 7

● Scalability - The system must be scalable to support all the vast amount of
applications we need to download and analyze. This will be done by designing our
system using microservices and using a NoSQL database.

● Availability - The system must be operating 24/7 to ensure that all versions are
collected when updated on an app store. In addition, the service needs to be
available 24/7 to support 3rd party requests at any time.

● Reliability - The system must be able to recover from an event such as a power
failure. The system will be designed to have fail safes and recovery functions to
ensure that the system can rebound from a negative event.

● Maintainability - The system needs to be maintainable past the day that we deliver
the product. Since webpages are constantly updated and changed the crawlers also
need to be updated to support those changes. This will be done by creating
detailed documentation on the product and designs of how each component
should behave.

● Security - The system must be secure and only allow authorized users to interact
with the system. We will implement this by carefully designing our system to
ensure only authorized users can access the data.

● Data Integrity - The data that we collect from the websites and the forensic tool
should not be modified by any individual after collection. We will ensure that the
data will remain genuine by restricting access to the database and filesystem. We
will also replicate our database to ensure that if there is a database failure we will
not lose any data.

The backend services for our system will have API endpoints to allow for the exchange of
information between each microservice. The endpoints will be designed and documented
following the OpenAPI Specification. This specification is the standard for developing
REST API’s. For ethical issues the team will use the IEEE ethic code to determine what the
best course of action is.

2.4 PREVIOUS WORK AND LITERATURE

When conducting research for the project, we found an existing product that crawled
through a web-version of several app stores. However, many of these existing crawlers
were out of date and did not work. These crawlers were found on github at
https://github.com/opengapps/apkcrawler​.

2.5 PROPOSED DESIGN

As our application will need to handle upwards of hundreds of terabytes of data, careful
consideration was taken as to the overall project design. In the end, we decided upon a

SDMAY19-38 8

https://github.com/opengapps/apkcrawler

combination of Python Flask apps, a MongoDB instance, and a filesystem. Using an array
of technologies allows our project to be well-suited for each of its subcomponents. More
detail is given into the system design in section 2.8.

2.6 TECHNOLOGY CONSIDERATIONS

Before we started, we debated about which coding language would work best for our
project. We talked about using Java, Python, or Javascript. We started with these three as
they are all known for building web crawlers. As we discussed how we would like these
web crawlers to work, we realized that we would like to implement multithreading. We
then ruled Javascript out as it does not support multithreading. Java and Python both had
libraries to help us with our goal. One big issue we faced was that we were not familiar
with Python. However, the repository our clients should us was written in Python and
could be used as a reference. Online, it was recommended that you used Python for web
crawlers because it is a scripting language. We ended up deciding on Python as the
referenced repository was written in Python and it seemed that there was a lot of support
online using Python as a web crawler.

Another crossroad that we faced was which type of database should we use. The big
question was should we go SQL or NoSQL. One of the big advantages of NoSQL
databases is its ability to scale. Because we are downloading so many apps and metadata, it
made sense to us that we would want a database to be able to handle this influx of data.
NoSQL databases also allows us to have a unstructured schemes. This allows us to have
documents and data with a variety of variables. This could be useful when dealing with
40+ app stores as they all have various amounts of metadata for their apps. SQL databases
requires queries to be predetermined. This feature allows large amounts of data to be
retrieved quickly and efficiently. SQL databases use long-established standard, which is
being adopted by ANSI. NoSQL databases do not adhere to any clear standard. It is easier
to manage SQL database systems without having to write substantial amount of code. In
the end we favored the scalability of NoSQL with the unstructured schemas. We felt that
this these features would best suit us.

2.7 SAFETY CONSIDERATIONS

Since our project does not actually involve any hardware development, there is little to no
physical danger that we must concern ourselves, our clients, or our end users with.

The Android app data and files must be secure. One of the reasons we chose MongoDB is
because it is a secure database, so we should not need to be concerned about our data
getting in the wrong hands.

SDMAY19-38 9

2.8 TASK APPROACH

Our client has specified that we need to use web crawlers to download and store Android
apps and metadata from various app stores. We have decided to use Python as the
language that our crawlers will be implemented with. This is due to Python having
existing web crawling libraries that make creating web crawlers much easier than with
other programming languages. After deciding on Python and the BeautifulSoup library, we
designed a microservice architecture that best fits the project specifications.

Figure 1: Proposed Architecture Diagram

We are using Flask to set up Python applications that perform the actions in the system.
The web crawlers access the app stores and obtain the APK files and metadata. This is sent
through the database interface application to a MongoDB database. The metadata and
APK file paths are saved into a table while the APK files are saved into a file system on the
server. Finally, an API is used to query the database. This would be used with a GUI that
forensic analysts can use to get Android app information.

SDMAY19-38 10

2.9 POSSIBLE RISKS AND RISK MANAGEMENT

Our project requires that we obtain a large amount of storage space to store all the
applications that we download. We might not be able to obtain all the space needed to
download all the APK files. We are looking into possible solutions that we can utilize at
the scale we need.

Another resource that might be difficult in obtaining at the scale we require is computing
power. Our solution will be crawling multiple app stores across millions of pages requiring
a significant amount of computing power be dedicated in parsing all of the web pages.
Currently we are talking to CSAFE to provide us with the compute power that we need. In
the meantime we can use a VM from ETG to test our service on a smaller scale.

We are implementing the solution in python and using MongoDB for our database. We as
a team do not extensive knowledge or have worked on a large project in python. This will
require us to ramp up our understanding of python. In addition, none of us have worked
extensively with MongoDB before which is another piece of technology that we will have
to learn.

2.10 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Some milestones we have established are:

● To have the crawler tools completed by the end of October. This will be tested by
checking the data sent back from the crawler is accurate to what data we are
looking to acquire.

● To have the database architecture complete by the end of September. This will be
tested by the approval of our clients.

● Collect a majority of app data by December 20th. We will test this by making sure
the app crawlers for each store are collecting the appropriate data and not
throwing errors.

● Perform app analysis on the apps collected by April 15th. At this point we will have
the app data we desire. The output of this data relies on our client’s forensic app.

2.11 PROJECT TRACKING PROCEDURES

We are using a Trello board to track what tasks have been completed and which tasks are
assigned to different team members. Our team also writes weekly reports that detail all
individual work that has been done that week, as well as the state of the project.

We meet with our client once a week to update them on our progress, ask questions to
clarify project specifics, and discuss challenges that we are facing. This is a great way to
keep communication between us consistent and is a good way to demo the project.

SDMAY19-38 11

We also hold team meetings at least once a week to discuss deadlines, assign tasks, and
make project decisions. This is also a good opportunity for the team to prepare any demos
or presentations for our weekly client meetings.

2.12 EXPECTED RESULTS AND VALIDATION

The desired outcome is to create a APK crawler that will crawl 40+ app stores and collect
their metadata and APK files. The metadata and the file paths pertaining to the location of
the APK files in our filesystem will be stored in our database along with information about
the APK after being run through a forensics program developed by our clients.

At a high level, we will ensure that a single crawler can pull data correctly from one
website. We will then make changes to suit each app store as they all store data
differently. Our database will be designed to look for the same information as most of the
metadata is common amongst the stores.

2.13 TEST PLAN

Web Crawlers:

All of the web crawlers must correctly obtain the APK files and metadata from
their respective Android app stores.

Test: Each web crawler will be run on ​n​ number of apps. Each APK file and its
metadata obtained must be checked against the versions on the web page for any
inconsistencies.

Result: All APK files and metadata are correctly obtained from the web crawler’s
Android app store.

Database:

The database must store all versions of apps, as well as different metadata from
different Android app stores. The APK file paths must point to valid APK files.

Test: Write dummy entries into the database with the same app names but
different versions and metadata. All of the entries should be present, with no
overwrites that have different metadata.

Result: The database is populated while creating multiple versions of the same app.

SDMAY19-38 12

Test: Write dummy entries with APK file paths into the database and add APK files
to the file system. Check that all of the file paths in the database lead to the correct
APK files.

Result: All of the file paths in the database point to the correct files.

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

3.2 FEASIBILITY ASSESSMENT

When looking at the desired outcomes and requirements for this project, it seems feasible.
Some of the challenges that are likely to appear in the project are that when creating
personalized crawlers for each app store, there will be html formats that are not uniform
across the different stores and sometimes within the same store. Along with that, the
stores do not all conform to a standard language. Another challenge will be in storing all
the information, as there are 40+ app stores and google play alone has 3.8 million apps.
With a sample space this large it will take up a large amount of space, which will be a
challenge in acquiring somewhere to store all the data.

SDMAY19-38 13

3.3 PERSONNEL EFFORT REQUIREMENTS

As seen below, Table 1 is a table of the major tasks that we need to accomplish in order to
complete our project. Implementation and documentation will take up the bulk of the
time, with implementation taking 730 hours alone. The total estimation for completing
our project is 825 hours. We have completed most of our research goals and have begun
implementing a starting crawler. With that baseline set, our work will be mimicking
behavior over the multiple app stores.

Major Tasks:

Task Description Estimated Time

Setup VM Acquire a VM from the ece department
that we can deploy our software onto

5 Hours

Research previous
app store crawlers

We will research previous versions of app
store crawlers to get an idea of how to
construct our implementations

20 Hours

Research app store
html
layout

Each app store has at least one unique
layout for how they display application
information

5 Hours

Design database
architecture

We will need to create a database that can
manage the different types of information
along with dealing with the large amount
of data

10 Hours

Implement database We need to have a stable database to be
able to send data to our database for
storage

10 Hours

Implement backend
system

We need a way to communicate with our
database for pulling and pushing
information

30 Hours

Implement app store
crawlers

We need to develop a unique solution for
each android app store in order to process
every application on each store.

16 Hours per store
* 45 =
720 Hours

Test Crawlers We need to make sure each crawler works
correctly

25 Hours

Table 1: Major Tasks

SDMAY19-38 14

3.4 OTHER RESOURCE REQUIREMENTS

The project will require external resources to maintain the team’s documentation and Git
instance. In addition, the team will also need a virtual machine to test the system. All
these resources will be provided by the Electrical and Computer Engineering
Department’s Electronics and Technology group. We also will need a final spot to deploy
our solution to and the digital forensic tools. These will be provided to use by CSAFE. The
project also requires a large amount of storage to support downloading such a large
number of applications. We will obtain the storage space to by utilizing Cybox as it allows
unlimited storage.

3.5 FINANCIAL REQUIREMENTS

We currently have no financial costs. The equipment required to run our system will be
provided to us for free from CSAFE, the Electronics and Technology group and Cybox. In
addition, all of the software that we will be using to implement our solution is free for us
to use.

4 Closure Materials

4.1 CONCLUSION

Our team plans to accomplish our goals, which consist of:

● Crawling over 40+ web-versions of android app stores
● Collecting all the data pertaining to each app (including the app itself)
● Storing all the information in a database
● Designing a way for querying the database for apps that log specified data

In order to achieve the goals we have set forth, we will delegate to each member a set of stores to
implement a crawler for. We will also secure a sizable storage space for the crawler to write to,
with a correlating database. Once we have both a database and a few crawlers set up, we will begin
the collection phase of the project, where the crawlers run until they finish. After the data has been
collected, we will create a user-friendly way to search for specific data and the apps that log it.

4.2 REFERENCES

GitHub used as reference:

https://github.com/opengapps/apkcrawler

SDMAY19-38 15

https://github.com/opengapps/apkcrawler

4.3 APPENDICES

SDMAY19-38 16

