

SDMAY19-38 1

Table of Contents
1 Introductory Material 5

1.1 Acknowledgement 5

1.2 Problem Statement 5

1.3 Operating Environment 5

1.4 Intended Users and Intended Uses 5

1.5 Assumptions and Limitations 6

1.6 Expected End Product and Other Deliverables 6

2 Proposed Approach and Statement of Work 7

2.1 Objective of the Task 7

2.2 Functional Requirements 7

2.3 Constraints Considerations 8

2.4 Standards 8

2.5 Previous Work And Literature 9

2.6 Proposed Design 10

2.7 Technology Considerations 11

2.8 Safety Considerations 11

2.9 Task Approach 12

2.10 Possible Risks And Risk Management 13

2.11 Project Proposed Milestones and Evaluation Criteria 13

2.12 Project Tracking Procedures 14

2.13 Expected Results and Validation 14

2.14 Test Plan 14

3 Project Timeline, Estimated Resources, and Challenges 16

3.1 Project Timeline 16

3.2 Feasibility Assessment 17

3.3 Personnel Effort Requirements 17

SDMAY19-38 2

3.4 Other Resource Requirements 18

3.5 Financial Requirements 19

4 Closure Materials 19

4.1 Conclusion 19

4.2 References 19

SDMAY19-38 3

List of Figures

Figure 1: Proposed Architecture Diagram

Figure 2: Project Timeline

List of Tables

Table 1: Major Tasks

List of Definitions

CSAFE - Center for Statistics and Applications in Forensic Evidence

REST API - Representational State Transfer Application Programming Interface

ETG - Electronics and Technology Group

IEEE - Institute of Electrical and Electronics Engineers

API - Application Programming Interface

ANSI - American National Standard Institute

SQL - Technology used for database management with fixed structures

NOSQL - Technology used for database management with dynamic structures

JSON - File format with key-value paired data

SDMAY19-38 4

1 Introductory Material

1.1 ACKNOWLEDGEMENT

Team 38’s Client: NIST Center of Excellence in Forensic Sciences - CSAFE at Iowa State
University

Team 38’s Advisors: Profs. Yong Guan and Neil Gong

1.2 PROBLEM STATEMENT

With technology becoming more and more integrated into the lives of everyone, digital
forensics has begun to play a larger role in proving innocence or guilt of suspects. One
piece of technology that is a staple of everyday life are cell-phones. Mobile apps, which are
located on phones create records of all sorts of digital evidence such as GPS locations,
activity timestamps, visited URLS, web history, social media contacts, etc., that is either
saved on the device or on their own servers. Current digital forensic practices often
involve manually combing through files, shared-preferences, and databases on the mobile
device. This process is time consuming and error prone.

Our goal is to create a real-world evidence database of over 7 million Android apps from
roughly 40+ app stores that are globally used. We will create web crawlers to traverse the
app stores collecting metadata and downloading the application. After collecting the
application file, we will run it through the forensic analysis tools to collect where the
application is storing the information that it gathers. The next step is to design a user
interface that forensic analysts can use to query mobile apps from our database and find
where the information they need is.

1.3 OPERATING ENVIRONMENT

We will need a physical server that can support the amount of memory space we will
accumulate. The various web crawlers will be running simultaneously on a virtual
machine. Our project will also include a web interface for investigators to use. This must
be compatible with several operating systems and multiple web browsers.

1.4 INTENDED USERS AND INTENDED USES

The primary intended end user for our database will be digital forensic investigators.
There are several different scenarios in which our database will be useful to a digital
investigator. One such situation might be in utilizing the location data from an

SDMAY19-38 5

application, associated with the timestamps, to prove that a client was not in a certain
place at a certain time. Investigators and their teams will be able to go to our web
interface and search for all the applications which are present on the mobile device. Our
software will tell them which applications contain the desired metadata.

Another possible user of our database will be academic researchers who study mobile
applications. As this database will be the largest collection of Android APK files to date,
researchers studying anything related to mobile applications and their contents may find
use in the ability to search through all the available applications across all the third party
app stores.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions

● A long term hosting solution is found
● BeautifulSoup Python Library is not deprecated for future updates to the database

Limitations

● Server will not be able to handle a massive amount of simultaneous requests to the
database or file system

● Project only focuses on Android mobile devices
● Crawlers may have not collected app store related information necessary for some

investigations

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

By April 28th, we are expecting to deliver a APK crawler that will crawl through 40+ app
stores and collect app metadata and their APK files. Additionally, we will have a database
that will store all the metadata from these apps and a evaluation based off the evidential
data from the apps.

The APK crawler is designed to crawl through over 40+ Android app stores to collect
metadata about these apps and download their APK files. It will be activated periodically
to collect any new apps that are uploaded and to collect data on apps that have been
updated. When finished crawling, it will upload the findings to our database to be yes
processed at a later time.

As explained above, the database will hold onto the apps metadata and the file path
leading to the APK files in our filesystem. After being stored, we will run the APK files
through our clients forensics application to determine where these apps store their data

SDMAY19-38 6

on a user’s device along with the type of data. This information will also be stored on this
database.

Lastly, we will be making a report for our clients based off the results of our database and
APK crawler. It will most likely consist of how well the crawler collects metadata and how
efficient it is. It will include possible improvements to be made when we hand the project
off. The report will also contain information on our database architecture and its ability to
scale and hold our information.

2 Proposed Approach and Statement of Work

2.1 OBJECTIVE OF THE TASK

Our project aims to develop a complete database consisting of information taken from
every android application from 40+ different app stores. The desired outcome from this is
to allow for criminal justice investigations to reach a verdict of guilt in a time-efficient
manner. This will be possible because they, will be able to query our database and get a
resulting list of applications that log the type of data they are searching for. In order to
make the process more efficient, we will also gather the number of downloads, ratings,
and other information regarding each app. This speeds up the process because it will give
an idea of apps that are likely to be a given phone.

2.2 FUNCTIONAL REQUIREMENTS

In order to meet our goals the:

● For all apps on an app store.
○ APK crawler must collect APK files. In addition to collecting the metadata,

the crawler will also download their current and past APK files.
○ APK crawler must store data in a database. This is self explanatory, but

once finished with collecting app metadata and its APK, it will store the
metadata and the location of the APK file in our file system into the
database.

○ App data must be passed into forensic program. Once collected, the APK
will be passed through our client’s forensic program that will output
additional information about where the app stores data on a user’s device.

○ Database must store results from forensic program. Again, self explanatory,
but once data has been passed to the forensic program it must store the
results outputted.

SDMAY19-38 7

2.3 CONSTRAINTS CONSIDERATIONS

For this project, constraints we have set forth consist of:

● Scalability - The system must be scalable to support all the vast amount of
applications we need to download and analyze. This will be done by designing our
system using microservices and using a NoSQL database.

● Availability - The system must be operating 24/7 to ensure that all versions are
collected when they are updated on an app store. In addition, the service needs to
be available 24/7 to support 3rd party requests at any time.

● Reliability - The system must be able to recover from an event such as a power
failure. The system will be designed with fail safes and recovery functionality to
ensure that the system can rebound from a negative event.

● Maintainability - The system needs to be maintainable past the day that we deliver
the product. Since webpages are constantly updated and changed the crawlers also
need to be updated to support those changes. This will be done by creating
detailed documentation on the product and designs of how each component
should behave.

● Security - The system must be secure and only allow authorized users to interact
with the system. We will implement this by carefully designing our system to
ensure only authorized users can access the data.

● Data Integrity - The data that we collect from the websites and the forensic tool
should not be modifiable by any individual after collection. We will ensure that the
data remains genuine by restricting access to the database and filesystem. We will
also replicate our database to ensure that if there is a database failure we will not
lose any data.

2.4 STANDARDS

The standards that we are following while developing our crawlers are defined by the
selection policy, re-visit policy, politeness policy, and parallelization policy. The selection
policy limits the the selection a crawler can crawl to, as a crawler can keep clicking on
links and traveling across the internet. Our crawlers are focused and are bound to their
respective website and not able to deviate from them. With re-visiting, our crawlers will
be run again every week in order to keep our data current. Re-visiting is broken down into
two policies; uniform and proportional. Our crawlers follow the uniform policy as we
update our data at the same frequency. The politeness policy states that we don’t put
excess strain on the website servers we are visiting. This means we should use wait
functions to slow our crawlers down and reduce the amount of requests per second. Most
websites have ways of detecting if a computer is creating too many requests and blocks
them out for a limited time. We will also need to adhere to this policy so that crawlers will
not get blocked. Lastly, the parallelization policy states that crawlers should divide the
workload among multiple processes or threads to maximize the download rate but

SDMAY19-38 8

minimize the overhead from parallelization. We implemented the parallelization policy by
having our crawlers create threads whenever it was time to download an APK file. This
allowed us to continue crawling and to add the file to our download queue.

The backend services for our system will have API endpoints to allow for the exchange of
information between each microservice. The endpoints will be designed and documented
following the OpenAPI Specification. This specification is the standard for developing
REST API’s. For ethical issues the team will use the IEEE ethic code to determine what the
best course of action is.

2.5 PREVIOUS WORK AND LITERATURE

All members of our team have had plenty of experience writing software. Specifically,
every member has designed and written a web crawler in Com S 311, an algorithms class.
One of the projects in that class involved creating a fast and efficient Wikipedia crawler in
Java. While we won’t be working with Java, the knowledge still translates over well. This
experience should come in handy when designing the web crawlers for the Android app
stores.

Multiple team members have also had experience designing and implementing a
microservice back-end system. This was done in Com S 309 and through an internship.
Com S 309 entailed creating a group project from start to finish, which required some kind
of back-end system. One of our team members worked with back-end systems during a
summer internship, so they are leading the back-end design.

When conducting research for the project, we found an existing product that crawled
through a web-version of several app stores. However, many of these existing crawlers
were out of date and did not work. These crawlers were found on github Opengapps.
(2015, August 5). Opengapps/apkcrawler. Retrieved November 2, 2018, from
https://github.com/opengapps/apkcrawler. We decided to build our web crawlers from
the ground up instead of working off of this repository, since updating and fixing the web
crawlers there would not save much time in the long run and might lead to a lesser
understanding of the project.

Currently we are unaware of software that does what we are trying to do commercially.
Our clients know of other teams that are working on a similar project as us. There is
growing interest in an application to use in criminal investigations. When we have our
client meetings our clients brief us on topics they have discussed with these other teams in
order to help us improve upon our project.

There are other forensic phone applications on the market. Some of them are: Ostorlab,
Appvigil, Quixxi, Andrototal, Akana, NVISO, SandDroid, QARK, and Mobile App Scanner.
The functionality of these applications range from providing security loopholes in your
app to alerting you if an app you downloaded has malicious intent. The forensics

SDMAY19-38 9

https://github.com/opengapps/apkcrawler

application that our clients are providing us will scan the apps and will provide the
location where these apps store data on a user’s device.

There is an existing database of apk files called AndroZoo and is hosted by the University
of Luxembourg. However it only holds apk files from a few stores and not much metadata
from each application. In addition, there is not a user friendly way to access the
information, as there is only a bash script.

2.6 PROPOSED DESIGN

As our application will need to handle upwards of hundreds of terabytes of data, careful
consideration was taken as to the overall project design. In the end, we decided upon a
combination of Python Flask apps, a MongoDB instance, and a filesystem. Figure 1 gives a
high level view of our system design. Each web crawler will be its own flask app and will
be responsible for gathering all the APK files and metadata for its respective application
store. We chose to use flask as our framework because it is a lightweight and minimal
framework. Using flask will reduce the overhead and time to integrate it into our system.
Flask also has support for many other features that we can add on as needed. This will be
done by implementing the Python library, Beautiful Soup. Beautiful Soup will allow us to
target a web page’s html and collect our metadata. We felt that Beautiful Soup was the
better choice when compared to Scrapy. Scrapy is a large framework compared to
Beautiful Soup, which is a simple HTML parser that gives us more flexibility when
scraping web pages. This has proven useful when we began to realize some app stores did
not consistent HTML throughout their store. Scrapy, being a large framework, would have
taken us a longer time to understand. Beautiful Soup was easier to learn and allowed us to
get started quicker. The MongoDB will be responsible for storing all metadata about an
app, the reports generated from the forensic analysis tools, and the file path to the APK
files. Since we are crawling 40+ app stores and collecting quite a bit of data, we felt the
obvious choice for a database was one that could handle the scale. The APK files will be
stored in CyBox as we will not need to access the APK files frequently. The clients are
concerned with the cost of hosting our data. They have asked us to use the Cybox instead
of common methods such as AWS. Using the Box SDK, each crawler will upload a APK file
on seperate threads to keep the program running as fast as possible. Our server will be
running a program that is in charge of creating and running crawlers. Each crawler is
responsible for collecting data from its store and uploading it to our database. From there,
the forensics software are clients will provide us with, will pull the APK files from the
database and process them to retrieve the location of the stored information. A user can
access these findings through a website. They will enter in query values to find the data
they need from the database. We decided on a single program to run our crawlers multiple
times. We went this route as our clients stated that they would like these crawlers to be
running periodically.

SDMAY19-38 10

2.7 TECHNOLOGY CONSIDERATIONS

Before we started, we debated about which coding language would work best for our
project. We talked about using Java, Python, or Javascript. We started with these three as
they are all known for building web crawlers. As we discussed how we would like these
web crawlers to work, we realized that we would like to implement multithreading. We
then ruled Javascript out as it does not support multithreading. Java and Python both had
libraries to help us with our goal. One big issue we faced was that we were not familiar
with Python. However, the repository our clients should us was written in Python and
could be used as a reference. Online, it was recommended that you used Python for web
crawlers because it is a scripting language. We ended up deciding on Python as the
referenced repository was written in Python and it seemed that there was a lot of support
online using Python as a web crawler.

Another crossroad that we faced was which type of database should we use. The big
question was should we go SQL or NoSQL. One of the big advantages of NoSQL
databases is its ability to scale. Because we are downloading so many apps and metadata, it
made sense to us that we would want a database to be able to handle this influx of data.
NoSQL databases also allows us to have a unstructured schemes. This allows us to have
documents and data with a variety of variables. This could be useful when dealing with
40+ app stores as they all have various amounts of metadata for their apps. SQL databases
requires queries to be predetermined. This feature allows large amounts of data to be
retrieved quickly and efficiently. SQL databases use long-established standard, which is
being adopted by ANSI. NoSQL databases do not adhere to any clear standard. It is easier
to manage SQL database systems without having to write substantial amount of code. In
the end we favored the scalability of NoSQL with the unstructured schemas. We felt that
this these features would best suit us.

In terms of our overall system design we prioritized scalability and performance when
deciding upon our architecture. Our system is scalable because each of of our crawlers is
independent, so we can add more crawlers to a particular store if we desire. In addition,
our database is able to scale horizontally which will allow us to handle variable workloads
more effectively. We are also utilizing cybox for storing our apks. This means that we
don’t have to worry about maintaining the vast storage of data the apk files will take need
and continue to grow as time goes on. However, by going this route we had to make some
tradeoffs. CyBox only allows a certain amount of simultaneous uploads and since we are
uploading them to a remote place that will also take time to complete.

2.8 SAFETY CONSIDERATIONS

Since our project does not actually involve any hardware development, there is little to no
physical danger that we must concern ourselves, our clients, or our end users with.

SDMAY19-38 11

The Android app data and files must be secure. One of the reasons we chose MongoDB is
because it is a secure database, so we should not need to be concerned about our data
getting in the wrong hands.

2.9 TASK APPROACH

Our client has specified that we need to use web crawlers to download and store Android
apps and metadata from various app stores. We have decided to use Python as the
language that our crawlers will be implemented with. This is due to Python having
existing web crawling libraries that make creating web crawlers much easier than with
other programming languages. After deciding on Python and the BeautifulSoup library, we
designed a microservice architecture that best fits the project specifications.

Figure 1: Proposed Architecture Diagram

SDMAY19-38 12

We are using Flask to set up Python applications that perform the actions in the system.
The web crawlers access the app stores and obtain the APK files and metadata. This is sent
through the database interface application to a MongoDB database. The metadata and
APK file paths are saved into a table while the APK files are saved into a file system on the
server. Finally, an API is used to query the database. This would be used with a GUI that
forensic analysts can use to get Android app information. Another discussed solution was
to save everything within the same database, without using the filesystem. While this
architecture would have made the system more encapsulating over all, storing the APK
files in a filesystem will solve many of the complications of designing a schema to store
APK files of varying sizes.

2.10 POSSIBLE RISKS AND RISK MANAGEMENT

Our project requires that we obtain a large amount of storage space to store all the
applications that we download. We might not be able to obtain all the space needed to
download all the APK files. We are looking into possible solutions that we can utilize at
the scale we need.

Another resource that might be difficult in obtaining at the scale we require is computing
power. Our solution will be crawling multiple app stores across millions of pages requiring
a significant amount of computing power be dedicated in parsing all of the web pages.
Currently we are talking to CSAFE to provide us with the compute power that we need. In
the meantime we can use a VM from ETG to test our service on a smaller scale.

We are implementing the solution in python and using MongoDB for our database. We as
a team do not extensive knowledge or have worked on a large project in python. This will
require us to ramp up our understanding of python. In addition, none of us have worked
extensively with MongoDB before which is another piece of technology that we will have
to learn.

2.11 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Some milestones we have established are:

● To have the crawler tools completed by the end of October. This will be tested by
checking the data sent back from the crawler is accurate to what data we are
looking to acquire.

● To have the database architecture complete by the end of September. This will be
tested by the approval of our clients.

● Collect a majority of app data by December 20th. We will test this by making sure
the app crawlers for each store are collecting the appropriate data and not
throwing errors.

SDMAY19-38 13

● Perform app analysis on the apps collected by April 15th. At this point we will have
the app data we desire. The output of this data relies on our client’s forensic app.

2.12 PROJECT TRACKING PROCEDURES

We are using a Trello board to track what tasks have been completed and which tasks are
assigned to different team members. Our team also writes weekly reports that detail all
individual work that has been done that week, as well as the state of the project.

We meet with our client once a week to update them on our progress, ask questions to
clarify project specifics, and discuss challenges that we are facing. This is a great way to
keep communication between us consistent and is a good way to demo the project.

We also hold team meetings at least once a week to discuss deadlines, assign tasks, and
make project decisions. This is also a good opportunity for the team to prepare any demos
or presentations for our weekly client meetings.

2.13 EXPECTED RESULTS AND VALIDATION

The desired outcome is to create a APK crawler that will crawl 40+ app stores and collect
their metadata and APK files. The metadata and the file paths pertaining to the location of
the APK files in our filesystem will be stored in our database along with information about
the APK after being run through a forensics program developed by our clients. This will
allow a user to enter in a query in a website and access the information for investigation
purposes.

At a high level, we will ensure that a single crawler can pull data correctly from one
website. We will then make changes to suit each app store as they all store data
differently. This satisfies our requirement to collect all the metadata from a single website.
Our database will be designed to look for the same information as most of the metadata is
common amongst the stores.

2.14 TEST PLAN

Web Crawlers:

Criteria To Test:

● All of the web crawlers must correctly obtain the APK files and metadata
from their respective Android app stores

● The metadata is successfully entered into the database
● The APK files are able to be upload to Cybox

SDMAY19-38 14

● The APK files can be accessed for the forensics tool to use

Test: Each web crawler will be run on n number of apps. Each APK file and its
metadata obtained must be checked against the versions on the web page for any
inconsistencies.

Result: Verification that all APK files and metadata are correctly obtained from the
web crawler’s Android app store.

Test: Testing for both adding data to the database and uploading to Cybox can be
done writing functions that are constantly sending requests to those services.

Result: The tests will allow us to determine how fast we can send data over to
these components. Using these times for uploads onto Cybox and the database,
we can implement wait times so that we don’t lose any APK files or metadata and
can maximize efficiency.

Test: A similar function can be used to request APK files from Cybox using their
SDK. Checking the output and comparing it to the input will also confirm that the
correct data was passed in.

Result: Successfully downloading APK files from Cybox will prove that forensics
tool can also pull from Cybox.

Database:

Criteria To Test:

● The database must store all versions of apps, as well as different metadata
from different Android app stores.

● The APK file paths must point to valid APK files.
● A request can be received for an app’s metadata
● The database can send the requested metadata to the requester

Test: Write dummy entries into the database with the same app names but
different versions and metadata. All of the entries should be present, with no
overwrites that have different metadata.

Result: The database is populated while creating multiple versions of the same app.

Test: Write dummy entries with APK file paths into the database and add APK files
to the file system. Check that all of the file paths in the database lead to the correct
APK files.

SDMAY19-38 15

Result: All of the file paths in the database point to the correct files.

Test: Testing for to see if the database received the request and getting the
response can be done in one test. The test function will call an endpoint on our
server asking for information about a certain app.

Result: Looking over the response sent back from our server will determine if our
request was correctly processed by the server and database.

Test: Determining whether the correct data and apk file can be retrieved from the
database. This test will directly query the database in order retrieve the desired
files. We will then compare the result to test cases that we manually created.

Result: By analyzing these result, we can determine if our database calls are
functioning correctly.

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

(Figure 2. Project Timeline)

Our project timeline is laid out in several phases. In the first phase we researched possible
technologies to use in our solution. In particular we will research how we were going to
crawl the application stores, what type of database to use, and how to store all the APK

SDMAY19-38 16

files. After we decide on the technologies we were going to use we will move on to our
next stage and begin implementing web crawlers for multiple stores. In addition, we will
also design our database schema and interactions with CyBox. We then will begin
collecting all of the information. This will be started by the end of the first semester and
completed in the second semester as it will take a large amount of time to process all of
this data. In the second semester we will focus on performing analysis on the APK files
and creating our web tool.

3.2 FEASIBILITY ASSESSMENT

When looking at the desired outcomes and requirements for this project, it seems feasible.
This is because we have a detailed plan as to how we are going to proceed, and when
looking at the projective timeline, we have allocated enough time to maintain a buffer for
any unforeseen setbacks. Additionally, we do not need to worry about cost because this
will be a purely software project, and the database hosting will be on Cybox. Cybox allows
free, unlimited storage to students, which will eliminate hosting costs. Some of the
challenges that are likely to appear in the project are that when creating personalized
crawlers for each app store, there will be html formats that are not uniform across the
different stores and sometimes within the same store. Currently, the only way to solve
these issues are to log which app stores and apps cause errors when running the standard
crawler. The fix is often times at check to see if they use a different format. Along with
that, the stores do not all conform to a standard language. We have not reached that point
where we are seeing app stores in different languages. The plan as of now is to discuss
these issues with our clients as we encounter them. Another challenge will be in storing all
the information, as there are 40+ app stores and google play alone has 3.8 million apps.
Our clients have asked us to use Cybox to store our database and APK files. Cybox states
that students have unlimited access, but will see latency with their accounts as they fill up
with space. We are in the process of finding another home for our data. However, it will
still reside on the university’s network.

3.3 PERSONNEL EFFORT REQUIREMENTS

As seen below, Table 1 is a table of the major tasks that we need to accomplish in order to
complete our project. Implementation and documentation will take up the bulk of the
time, with implementation taking 730 hours alone. The total estimation for completing
our project is 825 hours. We have completed most of our research goals and have begun
implementing a starting crawler. With that baseline set, our work will be mimicking
behavior over the multiple app stores.

SDMAY19-38 17

Major Tasks:

Task Description Estimated Time

Setup VM Acquire a VM from the ece department
that we can deploy our software onto

5 Hours

Research previous
app store crawlers

We will research previous versions of app
store crawlers to get an idea of how to
construct our implementations

20 Hours

Research app store
html
layout

Each app store has at least one unique
layout for how they display application
information

5 Hours

Design database
architecture

We will need to create a database that can
manage the different types of information
along with dealing with the large amount
of data

10 Hours

Implement database We need to have a stable database to be
able to send data to our database for
storage

10 Hours

Implement backend
system

We need a way to communicate with our
database for pulling and pushing
information

30 Hours

Implement app store
crawlers

We need to develop a unique solution for
each android app store in order to process
every application on each store.

16 Hours per store
* 45 =
720 Hours

Test Crawlers We need to make sure each crawler works
correctly

25 Hours

(Table 1: Major Tasks)

3.4 OTHER RESOURCE REQUIREMENTS

The project will require external resources to maintain the team’s documentation and Git
instance. In addition, the team will also need a virtual machine to test the system. All
these resources will be provided by the Electrical and Computer Engineering
Department’s Electronics and Technology group. We also will need a final spot to deploy
our solution to and the digital forensic tools. These will be provided to use by CSAFE. The
project also requires a large amount of storage to support downloading such a large

SDMAY19-38 18

number of applications. We will obtain the storage space to by utilizing Cybox as it allows
unlimited storage.

3.5 FINANCIAL REQUIREMENTS

We currently have no financial costs. The equipment required to run our system will be
provided to us for free from CSAFE, the Electronics and Technology group and Cybox. In
addition, all of the software that we will be using to implement our solution is free for us
to use.

4 Closure Materials

4.1 CONCLUSION

Our team plans to accomplish our goals, which consist of: crawling over 40+ web-versions
of android app stores, collecting all the data pertaining to each app (including the app
itself), storing all the information in a database, and designing a way for querying the
database for apps that log specified data. In order to achieve the goals we have set forth,
we will delegate to each member a set of stores to implement a crawler for. We will also
secure a sizable storage space for the crawler to write to, with a correlating database. Once
we have both a database and a few crawlers set up, we will begin the collection phase of
the project, where the crawlers run until they finish. After the data has been collected, we
will create a user-friendly way to search for specific data and the apps that log it. Our
solution will be able to increase the speed of forensic investigation, because our tool will
provide an easy to use interface, with quick response times from our database. This will
give forensic investigators to get the information they need in a time efficient manner.

4.2 REFERENCES

Buse, Nicholas. “Opengapps/Apkcrawler.” GitHub,
github.com/opengapps/apkcrawler.

University of Luxembourg “AndroZoo”, https://androzoo.uni.lu/

SDMAY19-38 19

https://androzoo.uni.lu/

